mBio (Aug 2019)

Structural Analysis of a Nitrogenase Iron Protein from <named-content content-type="genus-species">Methanosarcina acetivorans</named-content>: Implications for CO<sub>2</sub> Capture by a Surface-Exposed [Fe<sub>4</sub>S<sub>4</sub>] Cluster

  • Lee A. Rettberg,
  • Wonchull Kang,
  • Martin T. Stiebritz,
  • Caleb J. Hiller,
  • Chi Chung Lee,
  • Jasper Liedtke,
  • Markus W. Ribbe,
  • Yilin Hu

DOI
https://doi.org/10.1128/mBio.01497-19
Journal volume & issue
Vol. 10, no. 4

Abstract

Read online

ABSTRACT Nitrogenase iron (Fe) proteins reduce CO2 to CO and/or hydrocarbons under ambient conditions. Here, we report a 2.4-Å crystal structure of the Fe protein from Methanosarcina acetivorans (MaNifH), which is generated in the presence of a reductant, dithionite, and an alternative CO2 source, bicarbonate. Structural analysis of this methanogen Fe protein species suggests that CO2 is possibly captured in an unactivated, linear conformation near the [Fe4S4] cluster of MaNifH by a conserved arginine (Arg) pair in a concerted and, possibly, asymmetric manner. Density functional theory calculations and mutational analyses provide further support for the capture of CO2 on MaNifH while suggesting a possible role of Arg in the initial coordination of CO2 via hydrogen bonding and electrostatic interactions. These results provide a useful framework for further mechanistic investigations of CO2 activation by a surface-exposed [Fe4S4] cluster, which may facilitate future development of FeS catalysts for ambient conversion of CO2 into valuable chemical commodities. IMPORTANCE This work reports the crystal structure of a previously uncharacterized Fe protein from a methanogenic organism, which provides important insights into the structural properties of the less-characterized, yet highly interesting archaeal nitrogenase enzymes. Moreover, the structure-derived implications for CO2 capture by a surface-exposed [Fe4S4] cluster point to the possibility of developing novel strategies for CO2 sequestration while providing the initial insights into the unique mechanism of FeS-based CO2 activation.

Keywords