Journal of Functional Biomaterials (Nov 2022)

Human Coronary Plaque Optical Coherence Tomography Image Repairing, Multilayer Segmentation and Impact on Plaque Stress/Strain Calculations

  • Mengde Huang,
  • Akiko Maehara,
  • Dalin Tang,
  • Jian Zhu,
  • Liang Wang,
  • Rui Lv,
  • Yanwen Zhu,
  • Xiaoguo Zhang,
  • Mitsuaki Matsumura,
  • Lijuan Chen,
  • Genshan Ma,
  • Gary S. Mintz

DOI
https://doi.org/10.3390/jfb13040213
Journal volume & issue
Vol. 13, no. 4
p. 213

Abstract

Read online

Coronary vessel layer structure may have a considerable impact on plaque stress/strain calculations. Most current plaque models use single-layer vessel structures due to the lack of available multilayer segmentation techniques. In this paper, an automatic multilayer segmentation and repair method was developed to segment coronary optical coherence tomography (OCT) images to obtain multilayer vessel geometries for biomechanical model construction. Intravascular OCT data were acquired from six patients (one male; mean age: 70.0) using a protocol approved by the local institutional review board with informed consent obtained. A total of 436 OCT slices were selected in this study. Manually segmented data were used as the gold standard for method development and validation. The edge detection method and cubic spline surface fitting were applied to detect and repair the internal elastic membrane (IEM), external elastic membrane (EEM) and adventitia–periadventitia interface (ADV). The mean errors of automatic contours compared to manually segmented contours were 1.40%, 4.34% and 6.97%, respectively. The single-layer mean plaque stress value from lumen was 117.91 kPa, 10.79% lower than that from three-layer models (132.33 kPa). On the adventitia, the single-layer mean plaque stress value was 50.46 kPa, 156.28% higher than that from three-layer models (19.74 kPa). The proposed segmentation technique may have wide applications in vulnerable plaque research.

Keywords