Foods (Jun 2022)

An Integrative Glycomic Approach for Quantitative Meat Species Profiling

  • Sean Chia,
  • Gavin Teo,
  • Shi Jie Tay,
  • Larry Sai Weng Loo,
  • Corrine Wan,
  • Lyn Chiin Sim,
  • Hanry Yu,
  • Ian Walsh,
  • Kuin Tian Pang

DOI
https://doi.org/10.3390/foods11131952
Journal volume & issue
Vol. 11, no. 13
p. 1952

Abstract

Read online

It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.

Keywords