Molecular Medicine (Oct 2024)
Dexmedetomidine ameliorates acute kidney injury by regulating mitochondrial dynamics via the α2-AR/SIRT1/PGC-1α pathway activation in rats
Abstract
Abstract Background Sepsis-associated acute kidney injury (AKI) is a serious complication of systemic infection with high morbidity and mortality in patients. However, no effective drugs are available for AKI treatment. Dexmedetomidine (DEX) is an alpha 2 adrenal receptor agonist with antioxidant and anti-apoptotic effects. This study aimed to investigate the therapeutic effects of DEX on sepsis-associated AKI and to elucidate the role of mitochondrial dynamics during this process. Methods A lipopolysaccharide (LPS)-induced AKI rat model and an NRK-52E cell model were used in the study. This study investigated the effects of DEX on sepsis-associated AKI and the molecular mechanisms using histologic assessment, biochemical analyses, ultrastructural observation, western blotting, immunofluorescence, immunohistochemistry, qRT-PCR, flow cytometry, and si-mRNA transfection. Results In rats, the results showed that administration of DEX protected kidney structure and function from LPS-induced septic AKI. In addition, we found that DEX upregulated the α2-AR/SIRT1/PGC-1α pathway, protected mitochondrial structure and function, and decreased oxidative stress and apoptosis compared to the LPS group. In NRK-52E cells, DEX regulated the mitochondrial dynamic balance by preventing intracellular Ca2+ overloading and activating CaMKII. Conclusions DEX ameliorated septic AKI by reducing oxidative stress and apoptosis in addition to modulating mitochondrial dynamics via upregulation of the α2-AR/SIRT1/PGC-1α pathway. This is a confirmatory study about DEX pre-treatment to ameliorate septic AKI. Our research reveals a novel mechanistic molecular pathway by which DEX provides nephroprotection.
Keywords