Journal of Medical Internet Research (Jun 2020)

Comparisons Between Hypothesis- and Data-Driven Approaches for Multimorbidity Frailty Index: A Machine Learning Approach

  • Peng, Li-Ning,
  • Hsiao, Fei-Yuan,
  • Lee, Wei-Ju,
  • Huang, Shih-Tsung,
  • Chen, Liang-Kung

DOI
https://doi.org/10.2196/16213
Journal volume & issue
Vol. 22, no. 6
p. e16213

Abstract

Read online

BackgroundUsing big data and the theory of cumulative deficits to develop the multimorbidity frailty index (mFI) has become a widely accepted approach in public health and health care services. However, constructing the mFI using the most critical determinants and stratifying different risk groups with dose-response relationships remain major challenges in clinical practice. ObjectiveThis study aimed to develop the mFI by using machine learning methods that select variables based on the optimal fitness of the model. In addition, we aimed to further establish 4 entities of risk using a machine learning approach that would achieve the best distinction between groups and demonstrate the dose-response relationship. MethodsIn this study, we used Taiwan’s National Health Insurance Research Database to develop a machine learning multimorbidity frailty index (ML-mFI) using the theory of cumulative diseases/deficits of an individual older person. Compared to the conventional mFI, in which the selection of diseases/deficits is based on expert opinion, we adopted the random forest method to select the most influential diseases/deficits that predict adverse outcomes for older people. To ensure that the survival curves showed a dose-response relationship with overlap during the follow-up, we developed the distance index and coverage index, which can be used at any time point to classify the ML-mFI of all subjects into the categories of fit, mild frailty, moderate frailty, and severe frailty. Survival analysis was conducted to evaluate the ability of the ML-mFI to predict adverse outcomes, such as unplanned hospitalizations, intensive care unit (ICU) admissions, and mortality. ResultsThe final ML-mFI model contained 38 diseases/deficits. Compared with conventional mFI, both indices had similar distribution patterns by age and sex; however, among people aged 65 to 69 years, the mean mFI and ML-mFI were 0.037 (SD 0.048) and 0.0070 (SD 0.0254), respectively. The difference may result from discrepancies in the diseases/deficits selected in the mFI and the ML-mFI. A total of 86,133 subjects aged 65 to 100 years were included in this study and were categorized into 4 groups according to the ML-mFI. Both the Kaplan-Meier survival curves and Cox models showed that the ML-mFI significantly predicted all outcomes of interest, including all-cause mortality, unplanned hospitalizations, and all-cause ICU admissions at 1, 5, and 8 years of follow-up (P<.01). In particular, a dose-response relationship was revealed between the 4 ML-mFI groups and adverse outcomes. ConclusionsThe ML-mFI consists of 38 diseases/deficits that can successfully stratify risk groups associated with all-cause mortality, unplanned hospitalizations, and all-cause ICU admissions in older people, which indicates that precise, patient-centered medical care can be a reality in an aging society.