Scientific Data (Jun 2024)

CMRxRecon: A publicly available k-space dataset and benchmark to advance deep learning for cardiac MRI

  • Chengyan Wang,
  • Jun Lyu,
  • Shuo Wang,
  • Chen Qin,
  • Kunyuan Guo,
  • Xinyu Zhang,
  • Xiaotong Yu,
  • Yan Li,
  • Fanwen Wang,
  • Jianhua Jin,
  • Zhang Shi,
  • Ziqiang Xu,
  • Yapeng Tian,
  • Sha Hua,
  • Zhensen Chen,
  • Meng Liu,
  • Mengting Sun,
  • Xutong Kuang,
  • Kang Wang,
  • Haoran Wang,
  • Hao Li,
  • Yinghua Chu,
  • Guang Yang,
  • Wenjia Bai,
  • Xiahai Zhuang,
  • He Wang,
  • Jing Qin,
  • Xiaobo Qu

DOI
https://doi.org/10.1038/s41597-024-03525-4
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Cardiac magnetic resonance imaging (CMR) has emerged as a valuable diagnostic tool for cardiac diseases. However, a significant drawback of CMR is its slow imaging speed, resulting in low patient throughput and compromised clinical diagnostic quality. The limited temporal resolution also causes patient discomfort and introduces artifacts in the images, further diminishing their overall quality and diagnostic value. There has been growing interest in deep learning-based CMR imaging algorithms that can reconstruct high-quality images from highly under-sampled k-space data. However, the development of deep learning methods requires large training datasets, which have so far not been made publicly available for CMR. To address this gap, we released a dataset that includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects. Imaging studies include cardiac cine and mapping sequences. The ‘CMRxRecon’ dataset contains raw k-space data and auto-calibration lines. Our aim is to facilitate the advancement of state-of-the-art CMR image reconstruction by introducing standardized evaluation criteria and making the dataset freely accessible to the research community.