International Journal of Molecular Sciences (Jul 2024)

Stable Production of a Recombinant Single-Chain Eel Follicle-Stimulating Hormone Analog in CHO DG44 Cells

  • Munkhzaya Byambaragchaa,
  • Sei Hyen Park,
  • Sang-Gwon Kim,
  • Min Gyu Shin,
  • Shin-Kwon Kim,
  • Myung-Hum Park,
  • Myung-Hwa Kang,
  • Kwan-Sik Min

DOI
https://doi.org/10.3390/ijms25137282
Journal volume & issue
Vol. 25, no. 13
p. 7282

Abstract

Read online

This study aimed to produce single-chain recombinant Anguillid eel follicle-stimulating hormone (rec-eel FSH) analogs with high activity in Cricetulus griseus ovary DG44 (CHO DG44) cells. We recently reported that an O-linked glycosylated carboxyl-terminal peptide (CTP) of the equine chorionic gonadotropin (eCG) β-subunit contributes to high activity and time-dependent secretion in mammalian cells. We constructed a mutant (FSH-M), in which a linker including the eCG β-subunit CTP region (amino acids 115–149) was inserted between the β-subunit and α-subunit of wild-type single-chain eel FSH (FSH-wt). Plasmids containing eel FSH-wt and eel FSH-M were transfected into CHO DG44 cells, and single cells expressing each protein were isolated from 10 and 7 clones. Secretion increased gradually during the cultivation period and peaked at 4000–5000 ng/mL on day 9. The molecular weight of eel FSH-wt was 34–40 kDa, whereas that of eel FSH-M increased substantially, with two bands at 39–46 kDa. Treatment with PNGase F to remove the N glycosylation sites decreased the molecular weight remarkably to approximately 8 kDa. The EC50 value and maximal responsiveness of eel FSH-M were approximately 1.23- and 1.06-fold higher than those of eel FSH-wt, indicating that the mutant showed slightly higher biological activity. Phosphorylated extracellular-regulated kinase (pERK1/2) activation exhibited a sharp peak at 5 min, followed by a rapid decline. These findings indicate that the new rec-eel FSH molecule with the eCG β-subunit CTP linker shows potent activity and could be produced in massive quantities using the stable CHO DG44 cell system.

Keywords