Results in Physics (Feb 2024)

Single image super-resolution based on Bendlets analysis and structural dictionary learning

  • Kexin Meng,
  • Min Zhao,
  • Piercarlo Cattani,
  • Shuli Mei

Journal volume & issue
Vol. 57
p. 107367

Abstract

Read online

High-resolution biological tissue slice images provide opportunities for more precise observation and analysis of histopathological features. These images typically consist of enclosed contours, and Bendlets transform is an effective means to approximate such structures. In this study, we leverage Bendlet transform to incorporate multi-level image data, thereby establishing a multi-scale pyramid feature set. This approach aids in achieving a sparser representation of image textures and structures. We apply Bendlets transform to extract multi-frequency wavelet subband features and formulate structured dictionaries for both high and low resolutions based on these features. After creating these dictionaries, we compute sparse representation coefficients using the low-resolution dictionary and subsequently integrate them with the high-resolution dictionary to generate high-resolution subbands. Ultimately, through the process of inverse wavelet transformation, we completed the reconstruction of high-resolution images. This method not only significantly enhances the restoration of image details and clarity but also effectively preserves the overall structural characteristics of the original images.

Keywords