PLoS ONE (Jan 2012)

The weak complex between RhoGAP protein ARHGAP22 and signal regulatory protein 14-3-3 has 1:2 stoichiometry and a single peptide binding mode.

  • Shu-Hong Hu,
  • Andrew E Whitten,
  • Gordon J King,
  • Alun Jones,
  • Alexander F Rowland,
  • David E James,
  • Jennifer L Martin

DOI
https://doi.org/10.1371/journal.pone.0041731
Journal volume & issue
Vol. 7, no. 8
p. e41731

Abstract

Read online

ARHGAP22 is a RhoGAP protein comprising an N-terminal PH domain, a RhoGAP domain and a C-terminal coiled-coil domain. It has recently been identified as an Akt substrate that binds 14-3-3 proteins in response to treatment with growth factors involved in cell migration. We used a range of biophysical techniques to investigate the weak interaction between 14-3-3 and a truncated form of ARHGAP22 lacking the coiled-coil domain. This weak interaction could be stabilized by chemical cross-linking which we used to show that: a monomer of ARHGAP22 binds a dimer of 14-3-3; the ARHGAP22 PH domain is required for the 14-3-3 interaction; the RhoGAP domain is unlikely to participate in the interaction; Ser16 is the more important of two predicted 14-3-3 binding sites; and, phosphorylation of Ser16 may not be necessary for 14-3-3 interaction under the conditions we used. Small angle X-ray scattering and cross-link information were used to generate solution structures of the isolated proteins and of the cross-linked ARHGAP22:14-3-3 complex, showing that no major rearrangement occurs in either protein upon binding, and supporting a role for the PH domain and N-terminal peptide of ARHGAP22 in the 14-3-3 interaction. Small-angle X-ray scattering measurements of mixtures of ARHGAP22 and 14-3-3 were used to establish that the affinity of the interaction is ∼30 µM.