E3S Web of Conferences (Jan 2021)
Perspectives for usage of adsorption semiconductor sensors based on Pd/SnO2 in environmental monitoring of carbon monoxide and methane emission
Abstract
Nanosized semiconductor sensor materials based on SnO2 with different palladium contents were obtained via zol-gel technology with the use of ethylene glycol and hydrate of tin (VI) chloride as precursors. Morphology and phase composition of nanosized sensor materials were studied by X-ray diffraction and TEM methods. Catalytic activities of the Pd/SnO2 nanomaterials in the reaction of H2 and CO oxidation were investigated. Adsorption semiconductor sensors based on Pd/SnO2 nanomaterials were made by their calcination up to 620 0C in air and the sensors were found to be highly sensitive to presence of CO and CH4 in air ambient. Higher responses to CO of Pd-containing sensors in comparison with their responses to CH4 were confirmed by higher reaction activity of CO in catalytic oxidation reaction. Differences in sensitive properties of the sensors to methane and carbon monoxide were explained by features of the catalytic reactions of methane and carbon monoxide oxidation occurring on surfaces of the gas sensitive layers of the sensors.