Light: Science & Applications (Dec 2023)

A reflective display based on the electro-microfluidic assembly of particles within suppressed water-in-oil droplet array

  • Shitao Shen,
  • Haoqiang Feng,
  • Yueming Deng,
  • Shuting Xie,
  • Zichuan Yi,
  • Mingliang Jin,
  • Guofu Zhou,
  • Paul Mulvaney,
  • Lingling Shui

DOI
https://doi.org/10.1038/s41377-023-01333-w
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Reflective displays have stimulated considerable interest because of their friendly readability and low energy consumption. Herein, we develop a reflective display technique via an electro-microfluidic assembly of particles (eMAP) strategy whereby colored particles assemble into annular and planar structures inside a dyed water droplet to create “open” and “closed” states of a display pixel. Water-in-oil droplets are compressed within microwells to form a pixel array. The particles dispersed in droplets are driven by deformation-strengthened dielectrophoretic force to achieve fast and reversible motion and assemble into multiple structures. This eMAP based device can display designed information in three primary colors with ≥170° viewing angle, ~0.14 s switching time, and bistability with an optimized material system. This proposed technique demonstrates the basis of a high-performance and energy-saving reflective display, and the display speed and color quality could be further improved by structure and material optimization; exhibiting a potential reflective display technology.