Metals (Nov 2020)

Investigating the Aluminothermic Process for Producing Ferrotitanium Alloy from Ilmenite Concentrate

  • Ji-Hyuk Choi,
  • Hankwon Chang,
  • Taegong Ryu,
  • Chul-Woo Nam,
  • Byung-Su Kim

DOI
https://doi.org/10.3390/met10111493
Journal volume & issue
Vol. 10, no. 11
p. 1493

Abstract

Read online

The aluminothermic process is used for producing ferrotitanium alloy (FeTi) from an ilmenite concentrate. In this study, based on thermodynamic calculations and experiments, we investigated the effects of adding varying amounts of exothermal agent (NaClO3), slag-forming agent (CaO), and reducing agent (Al) on the recovery ratio of Ti in the aluminothermic process. The thermodynamic calculations suggested that the exothermal agent plays a crucial role in producing the FeTi alloy from the ilmenite concentrate and the maximum Ti grade in the FeTi alloy was approximately 30 wt %. Experimentally, it was verified that the FeTi alloy obtained under the optimum mixing conditions contained 30.2–30.8 wt % Ti, 1.1–1.3 wt % Si, 9.5–11.2 wt % Al, and 56.9–58.0 wt % Fe, along with trace impurities and small amounts of gases such as oxygen (0.35–0.66 wt %) and nitrogen (0.01–0.02 wt %). At the optimum mixing conditions, the recovery ratio of Ti into the obtained FeTi alloy phase was 60.6–68.9%. These results matched closely with the thermodynamic calculations. Therefore, the thermodynamic calculations performed herein are expected to significantly contribute toward the development of new processes and improvement in conventional processes for producing various ferroalloys including the FeTi alloy through the aluminothermic process.

Keywords