Nature Communications (Mar 2021)
Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet
- Marie Luise Grünbein,
- Alexander Gorel,
- Lutz Foucar,
- Sergio Carbajo,
- William Colocho,
- Sasha Gilevich,
- Elisabeth Hartmann,
- Mario Hilpert,
- Mark Hunter,
- Marco Kloos,
- Jason E. Koglin,
- Thomas J. Lane,
- Jim Lewandowski,
- Alberto Lutman,
- Karol Nass,
- Gabriela Nass Kovacs,
- Christopher M. Roome,
- John Sheppard,
- Robert L. Shoeman,
- Miriam Stricker,
- Tim van Driel,
- Sharon Vetter,
- R. Bruce Doak,
- Sébastien Boutet,
- Andrew Aquila,
- Franz Josef Decker,
- Thomas R. M. Barends,
- Claudiu Andrei Stan,
- Ilme Schlichting
Affiliations
- Marie Luise Grünbein
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Alexander Gorel
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Lutz Foucar
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Sergio Carbajo
- SLAC National Accelerator Laboratory
- William Colocho
- SLAC National Accelerator Laboratory
- Sasha Gilevich
- SLAC National Accelerator Laboratory
- Elisabeth Hartmann
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Mario Hilpert
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Mark Hunter
- SLAC National Accelerator Laboratory
- Marco Kloos
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Jason E. Koglin
- SLAC National Accelerator Laboratory
- Thomas J. Lane
- SLAC National Accelerator Laboratory
- Jim Lewandowski
- SLAC National Accelerator Laboratory
- Alberto Lutman
- SLAC National Accelerator Laboratory
- Karol Nass
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Gabriela Nass Kovacs
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Christopher M. Roome
- Max Planck Institute for Medical Research, Jahnstrasse 29
- John Sheppard
- SLAC National Accelerator Laboratory
- Robert L. Shoeman
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Miriam Stricker
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Tim van Driel
- SLAC National Accelerator Laboratory
- Sharon Vetter
- SLAC National Accelerator Laboratory
- R. Bruce Doak
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Sébastien Boutet
- SLAC National Accelerator Laboratory
- Andrew Aquila
- SLAC National Accelerator Laboratory
- Franz Josef Decker
- SLAC National Accelerator Laboratory
- Thomas R. M. Barends
- Max Planck Institute for Medical Research, Jahnstrasse 29
- Claudiu Andrei Stan
- Department of Physics, Rutgers University Newark
- Ilme Schlichting
- Max Planck Institute for Medical Research, Jahnstrasse 29
- DOI
- https://doi.org/10.1038/s41467-021-21819-8
- Journal volume & issue
-
Vol. 12,
no. 1
pp. 1 – 11
Abstract
X-ray fee-electron lasers (XFELs) enable time-resolved crystallography experiments and the structure determination of proteins with little or no radiation damage. However currently it is unknown whether the designated 4.5 MHz maximum pulse rate for the European XFEL could lead to sample damage caused by shock waves from preceding pulses. Here, the authors address this question by performing a X-ray pump X-ray probe experiment on haemoglobin microcrystals at the Stanford XFEL facility that mimics the 4.5 MHz data collection mode and observe structural changes and a drop in diffraction data quality of the crystals.