Nature Communications (Mar 2021)

Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet

  • Marie Luise Grünbein,
  • Alexander Gorel,
  • Lutz Foucar,
  • Sergio Carbajo,
  • William Colocho,
  • Sasha Gilevich,
  • Elisabeth Hartmann,
  • Mario Hilpert,
  • Mark Hunter,
  • Marco Kloos,
  • Jason E. Koglin,
  • Thomas J. Lane,
  • Jim Lewandowski,
  • Alberto Lutman,
  • Karol Nass,
  • Gabriela Nass Kovacs,
  • Christopher M. Roome,
  • John Sheppard,
  • Robert L. Shoeman,
  • Miriam Stricker,
  • Tim van Driel,
  • Sharon Vetter,
  • R. Bruce Doak,
  • Sébastien Boutet,
  • Andrew Aquila,
  • Franz Josef Decker,
  • Thomas R. M. Barends,
  • Claudiu Andrei Stan,
  • Ilme Schlichting

DOI
https://doi.org/10.1038/s41467-021-21819-8
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

X-ray fee-electron lasers (XFELs) enable time-resolved crystallography experiments and the structure determination of proteins with little or no radiation damage. However currently it is unknown whether the designated 4.5 MHz maximum pulse rate for the European XFEL could lead to sample damage caused by shock waves from preceding pulses. Here, the authors address this question by performing a X-ray pump X-ray probe experiment on haemoglobin microcrystals at the Stanford XFEL facility that mimics the 4.5 MHz data collection mode and observe structural changes and a drop in diffraction data quality of the crystals.