Energies (Mar 2023)

Performance Study on an Electrocaloric Heat Pump Based on Ga-Based Liquid Metal

  • Panpan Song,
  • Yawei Zhu,
  • Zhongyan An,
  • Mingshan Wei,
  • Xiaoxia Sun,
  • Yangjun Zhang

DOI
https://doi.org/10.3390/en16073104
Journal volume & issue
Vol. 16, no. 7
p. 3104

Abstract

Read online

A solid-state heat pump using the electrocaloric effect (ECE) provides a new idea for the future development of heat pumps. However, most of the electrocaloric (EC) heat pumps presented in the literature are low in efficiency and use at least one moving part, which significantly reduces the reliability of the heat pump and adds to its complexities. In this context, combining the positive and negative ECEs, we proposed a plate-laminar non-mobile EC heat pump adopting Gallium-based liquid metal as an intermediate medium to guarantee highly efficient heat transfer. Numerical simulation in COMSOL Multiphysics has been performed to investigate the correlation between different operating parameters and the performance of the EC heat pump. Changing the temperature span only, a COP of 8.13 and a UVHP of 746.1 W·dm−3 were obtained at a temperature span of 7 K. It was also found that the UVHP increased by 28.45% and COP increased by 25.46% after adding one layer of EC material. The electric-induced quantity of heat and cooling capacity was found to significantly affect the heating performance. The biggest heating power of 7132.7 W·dm−3 was obtained under 200 MV·m−1, and the biggest COP of 14.84 was obtained under 150 MV·m−1 at a cyclic period of 8 s. This study provides a highly efficient, non-mobile EC heat pump that employs fluid-thermal conjugated heat transfer, and exploration of the parameters makes the optimization of the heat pump possible by fine-tuning the operation parameters.

Keywords