BMC Infectious Diseases (Jan 2021)

Comparing tuberculosis gene signatures in malnourished individuals using the TBSignatureProfiler

  • W. Evan Johnson,
  • Aubrey Odom,
  • Chelsie Cintron,
  • Mutharaj Muthaiah,
  • Selby Knudsen,
  • Noyal Joseph,
  • Senbagavalli Babu,
  • Subitha Lakshminarayanan,
  • David F. Jenkins,
  • Yue Zhao,
  • Ethel Nankya,
  • C. Robert Horsburgh,
  • Gautam Roy,
  • Jerrold Ellner,
  • Sonali Sarkar,
  • Padmini Salgame,
  • Natasha S. Hochberg

DOI
https://doi.org/10.1186/s12879-020-05598-z
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Gene expression signatures have been used as biomarkers of tuberculosis (TB) risk and outcomes. Platforms are needed to simplify access to these signatures and determine their validity in the setting of comorbidities. We developed a computational profiling platform of TB signature gene sets and characterized the diagnostic ability of existing signature gene sets to differentiate active TB from LTBI in the setting of malnutrition. Methods We curated 45 existing TB-related signature gene sets and developed our TBSignatureProfiler software toolkit that estimates gene set activity using multiple enrichment methods and allows visualization of single- and multi-pathway results. The TBSignatureProfiler software is available through Bioconductor and on GitHub. For evaluation in malnutrition, we used whole blood gene expression profiling from 23 severely malnourished Indian individuals with TB and 15 severely malnourished household contacts with latent TB infection (LTBI). Severe malnutrition was defined as body mass index (BMI) < 16 kg/m2 in adults and based on weight-for-height Z scores in children < 18 years. Gene expression was measured using RNA-sequencing. Results The comparison and visualization functions from the TBSignatureProfiler showed that TB gene sets performed well in malnourished individuals; 40 gene sets had statistically significant discriminative power for differentiating TB from LTBI, with area under the curve ranging from 0.662–0.989. Three gene sets were not significantly predictive. Conclusion Our TBSignatureProfiler is a highly effective and user-friendly platform for applying and comparing published TB signature gene sets. Using this platform, we found that existing gene sets for TB function effectively in the setting of malnutrition, although differences in gene set applicability exist. RNA-sequencing gene sets should consider comorbidities and potential effects on diagnostic performance.

Keywords