Bulletin of the National Research Centre (Mar 2019)
Groundwater potentiality and evaluation in the Egyptian Nile Valley: case study from Assiut Governorate using hydrochemical, bacteriological approach, and GIS techniques
Abstract
Abstract Background The expected deficit of the Egyptian share of the River Nile budget with the construction of the Renaissance Dam in Ethiopia necessitates a proper utilization of the water resources in the Nile Valley. The present study aims at characterizing the chemical and bacteriological compositions of the groundwater in the Quaternary and Eocene fractured limestone aquifers in Assuit Governorate as a suggested scheme for the groundwater quality evaluation in the Egyptian River Nile basin. Results We analyzed 92 samples collected from shallow boreholes within 15 km on both sides of the River Nile for major, minor, and trace ions and compared the results to the national and international standards for drinking water. Some chemical data were collected from Assiut Drinking Water Station while some other samples were analyzed chemically and bacteriological in the Laboratories of Science and agriculture faculties and the laboratories of Assiut Drinking & sanitation Company. The groundwater composition is seasonally variable depending on the variation in the local surface water (level composition). The results of bacteriological examination show that the highest most probable number of total coliform was found 5.9 MPN/100 ml and the minimum value of MPN of total coliform was found 1.1 MPN/100 ml. Groundwater potentiality and evaluation for drinking and domestic uses depend on several parameters which must be taken into consideration. Conclusions The current research concluded that the GIS-based water potentiality spatial model (WPSM) indicated that the northwest part and southeast part represented the highest and lowest potentiality respectively for drinking water purposes. The suggested scheme in this study could be a valid tool to evaluate the water quality in the River Nile basin and similar settings worldwide.
Keywords