Frontiers in Energy Research (Mar 2023)

Applications of machine learning approaches in aerodynamic aspects of axial flow compressors: A review

  • Mohammad Reza Pakatchian,
  • Alireza Ziamolki,
  • Mohammad Alhuyi Nazari

DOI
https://doi.org/10.3389/fenrg.2023.1135055
Journal volume & issue
Vol. 11

Abstract

Read online

A compressor is one of the key components of a gas turbine engine and its performance and characteristics significantly affect the overall performance of the engine. Axial flow compressors are one of the most conventional types of compressors and are widely used in turbine engines for large-scale power generation. Intelligent techniques are useful for numerical simulation, characterization of axial compressors, and predicting their performance. The present work reviews studies applying different intelligent methods for performance forecasting and modeling different aerodynamic aspects of axial compressors. Corresponding to the outcomes of the considered research works, it can be expressed that by using these methods, axial compressors can be characterized properly with acceptable exactness. In addition, these techniques are useful for performance prediction of the compressors. The accuracy and performance of these methods is impacted by several elements, specifically the employed method and applied input variables. Finally, some suggestions are made for future studies in the field.

Keywords