Fracture and Structural Integrity (Apr 2008)
Effect of Carbon and Nitrogen Content on Deformation and Fracture of AISI 304 Austenitic Stainless Steel
Abstract
The effect of small differences in the content of carbon and nitrogen on the room temperature tensile deformation and fracture behaviour of an AISI 304 stainless steel was studied. In the steel containing the lower amount of carbon and nitrogen, a higher amount of strain induced alfa’ martensite is formed, which increases strain hardening rate and both uniform and total elongation at fracture. The presence of large martensitic areas in the cross section causes strain localization at the austenite/martensite interface, which promotes the nucleation of cracks and their propagation along the interface. This results in a decrease of Ultimate Tensile Strength. Strain induced transformation slightly reduces strain rate sensitivity, as well.