Applied Artificial Intelligence (Dec 2024)
Automatic Card Fraud Detection Based on Decision Tree Algorithm
Abstract
This paper delves into the analysis of card fraud within the banking system. Its aim is to gain a comprehensive understanding of fraud in the banking sector and explore effective detection techniques. The paper examines advanced techniques such as data analysis, automatic learning algorithms, and real-time monitoring systems to detect suspicious patterns, anomalies, and deviations from normal behavior with precision. To achieve this, the research methodology employs a combination of qualitative and quantitative analysis. Furthermore, empirical research is conducted to evaluate the effectiveness of Machine Learning-based decision tree algorithms in identifying card fraud using real-world datasets. By understanding the nature of fraud and implementing robust detection methods, banks can safeguard their operations, assets, and customers, and uphold trust in the banking system.