Insights into Imaging (Feb 2024)
Comparison contrast-enhanced CT with contrast-enhanced US in diagnosing combined hepatocellular-cholangiocarcinoma: a propensity score-matched study
Abstract
Abstract Objectives To develop and compare noninvasive models for differentiating between combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and HCC based on serum tumor markers, contrast-enhanced ultrasound (CEUS), and computed tomography (CECT). Methods From January 2010 to December 2021, patients with pathologically confirmed cHCC-CCA or HCC who underwent both preoperative CEUS and CECT were retrospectively enrolled. Propensity scores were calculated to match cHCC-CCA and HCC patients with a near-neighbor ratio of 1:2. Two predicted models, a CEUS-predominant (CEUS features plus tumor markers) and a CECT-predominant model (CECT features plus tumor markers), were constructed using logistic regression analyses. Model performance was evaluated by the area under the curve (AUC), sensitivity, specificity, and accuracy. Results A total of 135 patients (mean age, 51.3 years ± 10.9; 122 men) with 135 tumors (45 cHCC-CCA and 90 HCC) were included. By logistic regression analysis, unclear boundary in the intratumoral nonenhanced area, partial washout on CEUS, CA 19-9 > 100 U/mL, lack of cirrhosis, incomplete tumor capsule, and nonrim arterial phase hyperenhancement (APHE) volume 100 U/mL shows excellent sensitivity. Critical relevance statement Combining lack of cirrhosis, incomplete tumor capsule, and nonrim arterial phase hyperenhancement (APHE) volume 100 U/mL shows excellent sensitivity in differentiating cHCC-CCA from HCC. Key points 1. Accurate differentiation between cHCC-CCA and HCC is essential for treatment decisions. 2. The CECT-predominant model provides higher accuracy than the CEUS-predominant model for CHCC-CCA. 3. Combining CECT features and CA 19-9 levels shows a sensitivity of 93.3% in diagnosing cHCC-CCA. Graphical Abstract
Keywords