Atmosphere (Sep 2021)

Potential of <i>Chamomile recutita</i> Plant Material to Inhibit Urease Activity and Reduce NH<sub>3</sub> Volatilization in Two Agricultural Soils

  • Jie Li,
  • Shuai Wang,
  • Jiafa Luo,
  • Stuart Lindsey,
  • Lingli Wang,
  • Lei Zhang,
  • Yuanliang Shi

DOI
https://doi.org/10.3390/atmos12091223
Journal volume & issue
Vol. 12, no. 9
p. 1223

Abstract

Read online

The large amount of ammonia released during agricultural application of urea fertilizer can result in a partial loss of applied nitrogen, having a detrimental effect on air quality. Although Chamomile recutita has nitrogen transformation inhibitory properties, providing potential agricultural and environmental benefits, the full extent of the effects of the major constituents of this plant on urease activity and NH3 volatilization in soils is currently unknown. Soil incubation experiments were established using 2-Cyclopenten-1-one and Eugenol, two major constituents of C. recutita, to evaluate their effects on inorganic soil nitrogen pools, urease activity, and NH3 volatilization in grey desert soil and red soil. An application rate of 0.25 g N kg−1 soil fertilizer was applied as urea with and without additives. An unfertilized treatment was also included as a control. In order to compare results, N(butyl) thiophosphoric triamide (NBPT), a common synthetic urease inhibitor, was also used. NBPT, 2-Cyclopenten-1-one and Eugenol were applied at a rate of 0.00125 g kg−1 soil (equivalent to 0.5% N). The results indicated that the rate of urea hydrolysis was higher in grey desert soil compared to red soil. Soil in the urea-only treatments recorded urea hydrolysis to be almost complete within seven days of application. The rate of hydrolysis was inhibited by the two natural compounds, and higher concentrations of urea were maintained for more than two weeks. Soil amended with the two materials exhibited strong soil urease inhibition in both soil treatments (75.1% in the alkaline grey desert soil and 72.8% in the acidic red soil). The strongest inhibitory effect occurred one to three days after incubation in the Eugenol treatment. Moreover, the inhibitory effects of Cyclopenten-1-one and Eugenol were superior to that of NBPT in the two soils. Cyclopenten-1-one and Eugenol also significantly reduced soil NH3 emissions by 14.2 to 45.3%, especially in the acidic red soil. Molecular docking studies confirmed inhibition mechanisms, highlighting that natural compounds interacted with the amino acid residues of the urease active center. This action resulted in the urease active pocket being blocked, thereby inhibiting enzyme activity. Overall, our findings suggest that 2-Cyclopenten-1-one and Eugenol are both capable of hindering urease activity and reducing the risk of N loss in the two tested soils. Results highlight their applicability as urease inhibitors and their effect in delaying the release of ammonia nitrogen, thereby increasing fertilizer N use efficiency. However, in order to fully assess N use efficiency and the N balance due to the presence of Chamomile extract in soil-crop systems, further field scale investigations are required.

Keywords