Journal of Neuroinflammation (Apr 2010)

Kainic acid-induced microglial activation is attenuated in aged interleukin-18 deficient mice

  • Mix Eilhard,
  • Quezada Hernan,
  • Jin Tao,
  • Zhang Xing-Mei,
  • Winblad Bengt,
  • Zhu Jie

DOI
https://doi.org/10.1186/1742-2094-7-26
Journal volume & issue
Vol. 7, no. 1
p. 26

Abstract

Read online

Abstract Background Previously, we found that interleukin (IL)-18 deficiency aggravates kainic acid (KA)-induced hippocampal neurodegeneration in young C57BL/6 mice due to an over-compensation by IL-12. Additionally, IL-18 participates in fundamental inflammatory processes that increase during aging. In the present study, we were interested in the role of IL-18 in KA-induced neurodegeneration in aged female C57BL/6 mice. Methods Fifteen aged female IL-18 knockout (KO) and 15 age-matched wild-type (WT) mice (18 to 19 months old) were treated with KA at a dose of 25 mg/kg body weight intranasally. Seizure activities and behavioral changes were rated using a 6-point scoring system and open-field test, respectively. Seven days after KA treatment, degenerating neurons were detected by Nissl's method and Fluoro-Jade B staining; and microglial activation was analyzed by immunohistochemistry and flow cytometry. Results Aged female IL-18 KO and WT mice showed similar responses to treatment with KA as demonstrated by comparable seizure activities, behavioral changes and neuronal cell death. However, aged female IL-18 KO mice failed to exhibit the strong microglial activation shown in WT mice. Interestingly, even though the number of activated microglia was less in KA-treated IL-18 KO mice than in KA-treated WT mice, the proportion of microglia that expressed the cytokines tumor necrosis factor (TNF)-α, IL-6 and IL-10 was higher in KA-treated IL-18 KO mice. Conclusion Deficiency of IL-18 attenuates microglial activation after KA-induced excitotoxicity in aged brain, while the net effects of IL-18 deficiency are balanced by the enhancement of other cytokines, such as TNF-α, IL-6 and IL-10.