Scientific Reports (Oct 2024)

Capturing fine-scale coral dynamics with a metacommunity modelling framework

  • Anna K. Cresswell,
  • Vanessa Haller-Bull,
  • Manuel Gonzalez-Rivero,
  • James P. Gilmour,
  • Yves-Marie Bozec,
  • Diego R. Barneche,
  • Barbara Robson,
  • Kenneth R. N. Anthony,
  • Christopher Doropoulos,
  • Chris Roelfsema,
  • Mitchell Lyons,
  • Peter J. Mumby,
  • Scott Condie,
  • Veronique Lago,
  • Juan-Carlos Ortiz

DOI
https://doi.org/10.1038/s41598-024-73464-y
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Natural systems exhibit high spatial variability across multiple scales. Models that can capture ecosystem dynamics across space and time by explicitly incorporating major biological mechanisms are crucial, both for management and for ecological insight. In the case of coral reef systems, much focus has been on modelling variability between reefs, despite substantial variability also existing within reefs. We developed C~scape, a coral metacommunity modelling framework that integrates the demography of corals with population-level responses to physical and environmental spatial layers, to facilitate spatiotemporal predictions of coral dynamics across reefs at fine (100s of metres to kilometres) scales. We used satellite-derived habitat maps to modulate community growth spatially, as a proxy for the many interacting physical and environmental factors—e.g., depth, light, wave exposure, temperature, and substrate type—that drive within-reef variability in coral demography. With a case study from the Great Barrier Reef, we demonstrate the model’s capability for producing hindcasts of coral cover dynamics and show that overlooking within-reef variability may lead to misleading conclusions about metacommunity dynamics. C~scape provides a valuable framework for exploring a range of management and restoration scenarios at relevant spatial scales.