Arabian Journal of Chemistry (Nov 2022)

The fate and behavior of glufosinate-enantiomers and their metabolites in open-field soil and weeds

  • Yunfang Li,
  • Fei Wang,
  • Qiao Lin,
  • Pengyu Deng,
  • Yuping Zhang,
  • Deyu Hu

Journal volume & issue
Vol. 15, no. 11
p. 104191

Abstract

Read online

In this study, a chiral method based on high performance liquid chromatography–Q-Exactive Orbitrap Mass Spectrometry was developed to determine glufosinate stereoisomers and three metabolites in weed. Fortified recoveries in weed and soil samples were from 78.6 to 94.3 %, with relative standard deviations of less than 9.8 % and fortified values ranging from 0.04 to 40 mg/kg for the glufosinate enantiomers and 0.08–8 mg/kg for three metabolites. When glufosinate was given at the peak of weed growth in three orchards, it was mostly distributed and degraded in the weeds, with little remaining in the soil. The two glufosinate enantiomers degraded rapidly in the weeds and soils, with half-lives ranging from 0.7 to 3.1 days. The degradation of glufosinate enantiomers in Guizhou and Hunan weeds was enantioselective, with l-glufosinate being preferentially degraded. In Hainan weed, the degradation rate of the two enantiomers was nearly the same. In open field soils, glufosinate enantiomers were almost non-enantioselective. 3-methylphosphinico-propionic acid (MPP) was the primary glufosinate metabolite in weeds and soils, accounting for up to 14 % of the parent. N-acetyl-glufosinate (NAG) was relatively low, with less than 1 % of the parent glufosinate metabolized into 2-methylphosphinico-acetic acid (MPA).

Keywords