Current Research in Food Science (Nov 2020)

Comparison of nutritional properties and bioactive compounds between industrial and artisan fresh tortillas from maize landraces

  • Citlali Colín-Chávez,
  • Jose J. Virgen-Ortiz,
  • Luis E. Serrano-Rubio,
  • Miguel A. Martínez-Téllez,
  • Marta Astier

Journal volume & issue
Vol. 3
pp. 189 – 194

Abstract

Read online

Consumers are seeking for native-traditional foods to improve their intake of both nutrients and health-promoting phytochemicals. This study was designed to evaluate the difference in content of nutrients and bioactive compounds from handmade tortillas elaborated by a small-scale artisan producer and tortillas sold by a large food retailer available to consumers. All tortillas were analyzed for chemical composition, dietary fiber, calcium and phytochemical content, antioxidant capacity, and phenolic acids profile. Chemical and nutritional variation in the tortillas was estimated using principal component analysis. Data showed that artisan tortillas made from blue and white maize landraces had significantly (p < 0.05) higher content of nutritional and bioactive compounds compared to those of the supermarket. Handmade blue maize tortillas (HBMT) had a high content of free phenolics content and the highest antioxidant capacity (DPPH and ABTS methods), which was around 1.7–2.1 fold higher than that of commercially produced white maize tortillas (CWMT). Total dietary fiber was higher in HBMT (15.7 ± 1.06 g/100 g) than in CWMT (11.6 ± 0.96 g/100 g). CWMT had the lowest calcium content (42.1 ± 0.9 mg/100 g) compared to handmade tortillas (155.5 ± 4.5 mg/100 g). HPLC results indicated the presence of ferulic, p-coumaric, caffeic, syringic and 4-hydroxybenzoic acids. Interestingly, handmade tortillas from blue maize had 4.5-fold ferulic acid content compared with commercially produced white maize tortillas, consequently it can be a good source of phenolic antioxidants, particularly ferulic acid. This study showed that artisan fresh tortillas had superior nutritional-nutraceutical properties compared to CWMT.

Keywords