Nutrition & Metabolism (Jun 2022)

Comprehensive evaluation of caloric restriction-induced changes in the metabolome profile of mice

  • Dadi Xie,
  • Jinxi Huang,
  • Qiang Zhang,
  • Shiyuan Zhao,
  • Hongjia Xue,
  • Qing-Qing Yu,
  • Zhuohao Sun,
  • Jing Li,
  • Xiumei Yang,
  • Minglei Shao,
  • Deshui Pang,
  • Pei Jiang

DOI
https://doi.org/10.1186/s12986-022-00674-4
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Objects Caloric restriction (CR) is known to extend lifespan and exert a protective effect on organs, and is thus a low-cost and easily implemented approach to the health maintenance. However, there have been no studies that have systematically evaluated the metabolic changes that occur in the main tissues affected by CR. This study aimed to explore the target tissues metabolomic profile in CR mice. Methods Male C57BL/6J mice were randomly allocated to the CR group (n = 7) and control group (n = 7). A non-targeted gas chromatography–mass spectrometry approach and multivariate analysis were used to identify metabolites in the main tissues (serum, heart, liver, kidney, cortex, hippocampus, lung, muscle, and white adipose) in model of CR. Results We identified 10 metabolites in the heart that showed differential abundance between the 2 groups, along with 9 in kidney, 6 in liver, 6 in lung, 6 in white adipose, 4 in hippocampus, 4 in serum, 3 in cortex, and 2 in muscle. The most significantly altered metabolites were amino acids (AAs) (glycine, aspartic acid, l-isoleucine, l-proline, l-aspartic acid, l-serine, l-hydroxyproline, l-alanine, l-valine, l-threonine, l-glutamic acid, and l-phenylalanine) and fatty acids (FAs) (palmitic acid, 1-monopalmitin, glycerol monostearate, docosahexaenoic acid, 16-octadecenoic acid, oleic acid, stearic acid, and hexanoic acid). These metabolites were associated with 7 different functional pathways related to the metabolism of AAs, lipids, and energy. Conclusion Our results provide insight into the specific metabolic changes that are induced by CR and can serve as a reference for physiologic studies on how CR improves health and extends lifespan.

Keywords