Energies (Oct 2023)

Higher Electrical Conductivity of Functionalized Graphene Oxide Doped with Silver and Copper (II) Ions

  • Nelson Gustavo Alves Pereira,
  • Maria Elena Leyva Gonzaléz,
  • Alvaro Antonio Alencar de Queiroz,
  • Adhimar Flávio Oliveira,
  • Estácio Tavares Wanderley Neto

DOI
https://doi.org/10.3390/en16207019
Journal volume & issue
Vol. 16, no. 20
p. 7019

Abstract

Read online

This study presents a new methodology for graphene oxide (GO) synthesis through electrochemical exfoliation of graphite, followed by phthalic anhydride functionalization (PhA-GO) and doping with Cu2+ and Ag+ ions. The synthesis of GO involved the use of an electrochemical cell with H2SO4 as the electrolyte, with a gradual increase in potential from 2.3 V to 10 V. Extensive characterization techniques confirmed the successful incorporation of oxygen-containing functional groups, verifying the oxidation of graphite. PhA-GO functionalization was confirmed by thermogravimetric analysis, Differential Scanning Calorimetry, Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDX), which confirmed the presence of Cu2+ and Ag+ ions. The Scherrer equation determined a grain size of 75.85 nm for GO. The electrical properties exhibited semiconductor and semimetal behavior, particularly in PhA-GO/Ag+ composites, making them suitable for electronic devices over a wide temperature range, presenting a promising pathway for advanced materials in electronic applications.

Keywords