AI (Sep 2022)

A Pilot Study on the Use of Generative Adversarial Networks for Data Augmentation of Time Series

  • Nicolas Morizet,
  • Matteo Rizzato,
  • David Grimbert,
  • George Luta

DOI
https://doi.org/10.3390/ai3040047
Journal volume & issue
Vol. 3, no. 4
pp. 789 – 795

Abstract

Read online

Data augmentation is needed to use Deep Learning methods for the typically small time series datasets. There is limited literature on the evaluation of the performance of the use of Generative Adversarial Networks for time series data augmentation. We describe and discuss the results of a pilot study that extends a recent evaluation study of two families of data augmentation methods for time series (i.e., transformation-based methods and pattern-mixing methods), and provide recommendations for future work in this important area of research.

Keywords