Cell Division (Apr 2009)

Regulation of Chk1

  • Calonge Teresa M,
  • Tapia-Alveal Claudia,
  • O'Connell Matthew J

DOI
https://doi.org/10.1186/1747-1028-4-8
Journal volume & issue
Vol. 4, no. 1
p. 8

Abstract

Read online

Abstract Chk1 is a serine/threonine protein kinase that is the effector of the G2 DNA damage checkpoint. Chk1 homologs have a highly conserved N-terminal kinase domain, and a less conserved C-terminal regulatory domain of ~200 residues. In response to a variety of genomic lesions, a number of proteins collaborate to activate Chk1, which in turn ensures that the mitotic cyclin-dependent kinase Cdc2 remains in an inactive state until DNA repair is completed. Chk1 activation requires the phosphorylation of residues in the C-terminal domain, and this is catalyzed by the ATR protein kinase. How phosphorylation of the C-terminal regulatory domain activates the N-terminal kinase domain has not been elucidated, though some studies have suggested that this phosphorylation relieves an inhibitory intramolecular interaction between the N- and C-termini. However, recent studies in the fission yeast Schizosaccharomyces pombe have revealed that there is more to Chk1 regulation than this auto-inhibition model, and we review these findings and their implication to the biology of this genome integrity determinant.