Applied Sciences (Jan 2022)

A Fluid Inclusion and Critical/Rare Metal Study of Epithermal Quartz-Stibnite Veins Associated with the Gerakario Porphyry Deposit, Northern Greece

  • Christos L. Stergiou,
  • Vasilios Melfos,
  • Panagiotis Voudouris,
  • Lambrini Papadopoulou,
  • Paul G. Spry,
  • Irena Peytcheva,
  • Dimitrina Dimitrova,
  • Elitsa Stefanova

DOI
https://doi.org/10.3390/app12020909
Journal volume & issue
Vol. 12, no. 2
p. 909

Abstract

Read online

The Gerakario Cu-Au porphyry deposit in the Kilkis ore district, northern Greece, contains epithermal quartz-stibnite veins on the eastern side of the deposit, which crosscut a two-mica gneiss. Metallic mineralization in these veins consists of stibnite + berthierite + native antimony + pyrite + arsenopyrite, and minor marcasite, pyrrhotite, chalcopyrite, löllingite, and native gold. Bulk geochemical analyses of the ore reveal an enrichment in critical and rare metals, including Ag, Au, Bi, Ce, Co, Ga, La, and Sb. Analysis of stibnite with LA-ICP-MS showed an enrichment in base metals (As, Cu, Pb), as well as weak to moderate contents of critical and rare metals (Ag, Bi, Ce, La, Re, Sm, Th, Ti, Tl). A statistical analysis of the trace elements show a positive correlation for the elemental pairs Ce-La, Ce-Sb, and La-Sb, and a negative correlation for the pair Bi-Sb. Fluid inclusions in the A-type veins of the porphyry-style mineralization show the presence of fluid boiling, resulting in a highly saline aqueous fluid phase (35.7 to 45.6 wt.% NaCl equiv.) and a moderately saline gas phase (14 to 22 wt.% NaCl equiv.) in the system H2O-NaCl-KCl at temperatures varying between 380° and 460 °C and pressures from 100 to 580 bar. Mixing of the moderate saline fluid with meteoric water produced less saline fluids (8 to 10 wt.% NaCl equiv.), which are associated with the epithermal quartz-stibnite vein mineralization. This process took place under hydrostatic pressures ranging from 65 to 116 bar at a depth between 600 and 1000 m, and at temperatures mainly from 280° to 320 °C.

Keywords