The Astrophysical Journal Supplement Series (Jan 2024)

Design and Performance of a 30/40 GHz Diplexed Focal Plane for the BICEP Array

  • Corwin Shiu,
  • Ahmed Soliman,
  • Roger O’Brient,
  • Bryan Steinbach,
  • James J. Bock,
  • Clifford F. Frez,
  • William C. Jones,
  • Krikor. G. Megerian,
  • Lorenzo Moncelsi,
  • Alessandro Schillaci,
  • Anthony D. Turner,
  • Alexis C. Weber,
  • Cheng Zhang,
  • Silvia Zhang

DOI
https://doi.org/10.3847/1538-4365/ad34d8
Journal volume & issue
Vol. 272, no. 1
p. 12

Abstract

Read online

We demonstrate a wideband diplexed focal plane suitable for observing low-frequency foregrounds that are important for cosmic microwave background polarimetry. The antenna elements are composed of slotted bowtie antennas with 60% bandwidth that can be partitioned into two bands. Each pixel is composed of two interleaved 12 × 12 pairs of linearly polarized antenna elements forming a phased array, designed to synthesize a symmetric beam with no need for focusing optics. The signal from each antenna element is captured in-phase and uniformly weighted by a microstrip summing tree. The antenna signal is diplexed into two bands through the use of two complementary, six-pole Butterworth filters. This filter architecture ensures a contiguous impedance match at all frequencies, and thereby achieves minimal reflection loss between both bands. Subsequently, out-of-band rejection is increased with a bandpass filter and the signal is then deposited on a transition-edge sensor bolometer island. We demonstrate the performance of this focal plane with two distinct bands, 30 and 40 GHz, each with a bandwidth of ∼20 and 15 GHz, respectively. The unequal bandwidths between the two bands are caused by an unintentional shift in diplexer frequency from its design values. The end-to-end optical efficiency of these detectors is relatively modest, at 20%–30%, with an efficiency loss due to an unknown impedance mismatch in the summing tree. Far-field beam maps show good optical characteristics, with edge pixels having no more than ∼5% ellipticity and ∼10%–15% peak-to-peak differences for A–B polarization pairs.

Keywords