Journal of Intelligent Systems (Sep 2020)

Soft computing based compressive sensing techniques in signal processing: A comprehensive review

  • Mishra Ishani,
  • Jain Sanjay

DOI
https://doi.org/10.1515/jisys-2019-0215
Journal volume & issue
Vol. 30, no. 1
pp. 312 – 326

Abstract

Read online

In this modern world, a massive amount of data is processed and broadcasted daily. This includes the use of high energy, massive use of memory space, and increased power use. In a few applications, for example, image processing, signal processing, and possession of data signals, etc., the signals included can be viewed as light in a few spaces. The compressive sensing theory could be an appropriate contender to manage these limitations. “Compressive Sensing theory” preserves extremely helpful while signals are sparse or compressible. It very well may be utilized to recoup light or compressive signals with less estimation than customary strategies. Two issues must be addressed by CS: plan of the estimation framework and advancement of a proficient sparse recovery calculation. The essential intention of this work expects to audit a few ideas and utilizations of compressive sensing and to give an overview of the most significant sparse recovery calculations from every class. The exhibition of acquisition and reconstruction strategies is examined regarding the Compression Ratio, Reconstruction Accuracy, Mean Square Error, and so on.

Keywords