Electronic Journal of Qualitative Theory of Differential Equations (Oct 2016)

A variational property on the evolutionary bifurcation curves for the one-dimensional perturbed Gelfand problem from combustion theory

  • Shao-Yuan Huang,
  • Shin-Hwa Wang

DOI
https://doi.org/10.14232/ejqtde.2016.1.94
Journal volume & issue
Vol. 2016, no. 94
pp. 1 – 21

Abstract

Read online

We study a variational property on the evolutionary bifurcation curves for the one-dimensional perturbed Gelfand problem from combustion theory \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \exp \left( \frac{au}{a+u}\right) =0, & -10$ is the Frank–Kamenetskii parameter or ignition parameter, $a>0$ is the activation energy parameter, and $u$ is the dimensionless temperature.

Keywords