JOR Spine (Sep 2024)

Protective effects of curcumin against spinal cord injury

  • Seyed Mehrad Razavi,
  • Danial Khayatan,
  • Zahra Najafi Arab,
  • Yasamin Hosseini,
  • Maryam Khanahmadi,
  • Saeideh Momtaz,
  • Tannaz Jamialahmadi,
  • Thomas P. Johnston,
  • Amir Hossein Abdolghaffari,
  • Amirhossein Sahebkar

DOI
https://doi.org/10.1002/jsp2.1364
Journal volume & issue
Vol. 7, no. 3
pp. n/a – n/a

Abstract

Read online

Abstract Background In parallel with population aging, the prevalence of neurological and neurodegenerative diseases has been dramatically increasing over the past few decades. Neurodegenerative diseases reduce the quality of life of patients and impose a high cost on the health system. These slowly progressive diseases can cause functional, perceptual, and behavioral deficits in patients. Therefore, neurodegenerative impairments have always been an interesting subject for scientists and clinicians. One of these diseases is spinal cord injury (SCI). SCI can lead to irreversible damage and is classified into two main subtypes: traumatic and non‐traumatic, each with very different pathophysiological features. Aims This review aims to gather relevant information about the beneficial effects of curcumin (Cur), with specific emphasis on its anti‐inflammatory properties towards spinal cord injury (SCI) patients. Materials & Methods The review collates data from extensive in‐vitro, in‐vivo, and clinical trials documenting the effects of CUR on SCI. It examines the modulation of pathophysiological pathways and regulation of the inflammatory cascades after CUR administration. Results Various pathophysiological processes involving the nuclear factor erythroid 2‐related factor 2 (Nrf2), nuclear factor kappa B (NF‐kB), and transforming growth factor beta (TGF‐β) signaling pathways have been suggested to exacerbate damages resulting from SCI. CUR administration showed to modulate these signaling pathways which lead to attenuation of SCI complications. Discussion Anti‐inflammatory compounds, particularly CUR, can modulate these pathophysiological pathways and regulate the inflammatory cascades. CUR, a well‐known natural product with significant anti‐inflammatory effects, has been extensively documented in experimental and clinical trials. Conclusion Curcumin's potential to alter key steps in the Nrf2, NF‐kB, and TGF‐β signaling pathways suggests that it may play a role in attenuating SCI complications.

Keywords