Remote Sensing (Nov 2020)

Mud Volcanism at the Taman Peninsula: Multiscale Analysis of Remote Sensing and Morphometric Data

  • Tatyana N. Skrypitsyna,
  • Igor V. Florinsky,
  • Denis E. Beloborodov,
  • Olga V. Gaydalenok

DOI
https://doi.org/10.3390/rs12223763
Journal volume & issue
Vol. 12, no. 22
p. 3763

Abstract

Read online

Mud volcanism is observed in many tectonically active regions worldwide. One of the typical areas of mud volcanic activity is the Taman Peninsula, Russia. In this article, we examine the possibilities of multiscale analysis of remote sensing and morphometric data of different origins, years, scales, and resolutions for studying mud volcanic landscapes. The research is exemplified by the central-northern margin of the Taman Peninsula, where mud volcanism has only been little studied. The data set included one arc-second gridded Advanced Land Observing Satellite World three-dimensional (3D) digital surface model (AW3D30 DSM); a Corona historical declassified satellite photography; high-resolution imagery from an unmanned aerial survey (UAS) conducted with a multi-copter drone DJI Phantom 4 Pro, as well as a series of 1-m gridded morphometric models, including 12 curvatures (minimal, maximal, mean, Gaussian, unsphericity, horizontal, vertical, difference, vertical excess, horizontal excess, accumulation, and ring one) derived from UAS-based images. The data analysis allowed us to clarify the conditions of neotectonic development in the central-northern margin of the Taman Peninsula, as well as to specify manifestations of the mud volcanism in this region. In particular, we were able to detect minor and weakly topographically expressed mud volcanic features (probably, inactive gryphons, and salses), which are hidden by long-term farming practice (e.g., ploughed and covered by soil).

Keywords