Arthritis Research & Therapy (Oct 2020)

CXCL1 contributes to IL-6 expression in osteoarthritis and rheumatoid arthritis synovial fibroblasts by CXCR2, c-Raf, MAPK, and AP-1 pathway

  • Sheng-Mou Hou,
  • Po-Chun Chen,
  • Chieh-Mo Lin,
  • Mei-Ling Fang,
  • Miao-Ching Chi,
  • Ju-Fang Liu

DOI
https://doi.org/10.1186/s13075-020-02331-8
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Osteoarthritis (OA) and rheumatoid arthritis (RA) are common joint disorders that are considered to be different diseases due to their unique molecular mechanisms and pathogenesis. Chemokines and their corresponding receptors have been well characterized in RA progression, but less so in OA pathogenesis. Methods The human primary synovial fibroblasts (SFs) were obtained from human OA and RA tissue samples. The Western blot and qPCR were performed to analyze the expression levels of CXCL1, as well as CXCL-promoted IL-6 expression in both OASFs and RASFs. The signal cascades that mediate the CXCL1-promoted IL-6 expression were identified by using chemical inhibitors, siRNAs, and shRNAs. Results Here, we found that both diseases feature elevated levels of CXCL1 and interleukin (IL)-6, an important proinflammatory cytokine that participates in OA and RA pathogenesis. In OASFs and RASFs, CXCL1 promoted IL-6 expression in a dose- and time-dependent manner. In OASFs and RASFs overexpressing CXCL1 or transduced with shRNA plasmid, IL-6 expression was markedly upregulated. CXCR2, c-Raf, and MAPKs were found to regulate CXCL1-induced IL-6 expression in OASFs and RASFs. Finally, CXCL1 triggered the transcriptional activities of c-Jun (which regulates the expression of proinflammatory proteins) in OASFs and RASFs. Conclusions Our present work suggests that the CXCL1/CXCR2 axis helps to orchestrate inflammatory responses in OA and RA SFs.

Keywords