Atmosphere (Aug 2023)

Comparative Analysis of Neural Network Models for Predicting Ammonia Concentrations in a Mechanically Ventilated Sow Gestation Facility in Korea

  • Junsu Park,
  • Gwanggon Jo,
  • Minwoong Jung,
  • Youngmin Oh

DOI
https://doi.org/10.3390/atmos14081248
Journal volume & issue
Vol. 14, no. 8
p. 1248

Abstract

Read online

Conventional methods for monitoring ammonia (NH3) emissions from livestock farms have several challenges, such as a poor environment for measurement, difficulty in accessing livestock, and problems with long-term measurement. To address these issues, we applied various neural network models for the long-term prediction of NH3 concentrations from sow farms in this study. Environmental parameters, including temperature, humidity, ventilation rate, and past records of NH3 concentrations, were given as inputs to the models. These neural network models took the encoder or the feature extracting parts from the representative deep learning models, including Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Transformer, to encode temporal patterns of time series. However, all of these models adopted dense layers for the decoder to format the task of long-term prediction as a regression problem. Due to their regression nature, all models showed a robust performance in predicting long-term NH3 concentrations at a scale of weeks or even months despite there being a relatively short period of input signals (a few days to a week). Given one week of input, LSTM showed the minimum mean absolute errors (MAE) of 1.83, 1.78, and 1.87 ppm for the prediction of one, two, and three weeks, respectively, whereas Transformer performed best with a MAE of 1.73 ppm for a four-week prediction. In the long-term estimation of spanning months, LSTM showed the minimum MAEs of 1.95 and 1.90 ppm when trained on predicting two and three weeks of windows. At the same condition, Transformer gave the minimum MAEs of 1.87 and 1.83 when trained on predicting one and four weeks of windows. Overall, the neural network models can facilitate the prediction of national-level NH3 emissions, the development of mitigation strategies for NH3-derived air pollutants, odor management, and the monitoring of animal-rearing environments. Further, their integration of real-time measurement devices can significantly prolong device longevity and offer substantial cost savings.

Keywords