Annales Geophysicae (May 2019)
Magnetic dipolarizations inside geosynchronous orbit with tailward ion flows
Abstract
Electromagnetic field and plasma data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) near-Earth probes are used to investigate magnetic dipolarizations inside geosynchronous orbit on 27 August 2014 during an intense substorm with AEmax∼1000 nT. THEMIS-D (TH-D) was located inside geosynchronous orbit around midnight in the interval from 09:25 to 09:55 UT. During this period, two distinct magnetic dipolarizations with tailward ion flows are observed by TH-D. The first one is indicated by the magnetic elevation angle increase from 15 to 25∘ around 09:30:40 UT. The tailward perpendicular velocity is V⊥x∼-50 km s−1. The second one is presented by the elevation angle increase from 25 to 45∘ around 09:36 UT, and the tailward perpendicular velocity is V⊥x∼-70 km s−1. These two significant dipolarizations are accompanied with the sharp increase in the energy flux of energetic electron inside geosynchronous orbit. After a 5 min expansion of the near-Earth plasma sheet (NEPS), THEMIS-E (TH-E) located outside geosynchronous orbit also detected this tailward expanding plasma sheet with ion flows of −150 km s−1. The dipolarization propagates tailward with a speed of −47 km s−1 along a 2.2 RE distance in the X direction between TH-D and TH-E within 5 min. These dipolarizations with tailward ion flows observed inside geosynchronous orbit indicate a new energy transfer path in the inner magnetosphere during substorms.