Energies (Nov 2022)

Improving the Efficiency of Environmental Temperature Control in Homes and Buildings

  • Murat Kunelbayev,
  • Yedilkhan Amirgaliyev,
  • Talgat Sundetov

DOI
https://doi.org/10.3390/en15238839
Journal volume & issue
Vol. 15, no. 23
p. 8839

Abstract

Read online

This research developed an effective environmental temperature control system for homes and buildings. The study used a photovoltaic panel (PV) and developed a solar installation with thermosiphon circulation, which has a flat solar collector and heat-insulating translucent glass with double glazing with reduced pressure. The coolant is made of thin-walled corrugated stainless pipe. The heat from the solar flux heats the liquid removed from the collector, and cold water from the siphon enters its place. There is a constant circulation of heat, which increases heat transfer efficiency by eliminating additional partitions between the panel and thermal insulation. We have also developed a solar system control controller, which includes an electronic unit with six sensors. The six sensors are controlled by the STM32 programmable Logistics Integrated circuit (FPGA), designed to monitor the entire solar system, and the drives include power relays. The performance of the photovoltaic panel and the room’s temperature change are calculated during both the simulation and testing of the controller. The standard error was 20% compared to other controllers. During the experiment, the consumption savings amounted to about 1% due to the control signal in the controller, which has a significant impact on the service life of the equipment.

Keywords