Energies (Nov 2023)

Electrification of Biorefinery Concepts for Improved Productivity—Yield, Economic and GHG Performances

  • Sennai Mesfun,
  • Gabriel Gustafsson,
  • Anton Larsson,
  • Mahrokh Samavati,
  • Erik Furusjö

DOI
https://doi.org/10.3390/en16217436
Journal volume & issue
Vol. 16, no. 21
p. 7436

Abstract

Read online

Demand for biofuels will likely increase, driven by intensifying obligations to decarbonize aviation and maritime sectors. Sustainable biomass is a finite resource, and the forest harvesting level is a topic of ongoing discussions, in relation to biodiversity preservation and the short-term role of forests as carbon sinks. State-of-the-art technologies for converting lignocellulosic feedstock into transportation biofuels achieves a carbon utilization rate ranging from 25% to 50%. Mature technologies like second-generation ethanol and gasification-based processes tend to fall toward the lower end of this spectrum. This study explores how electrification can enhance the carbon efficiency of biorefinery concepts and investigates its impact on energy, economics and greenhouse gas emissions. Results show that electrification increases carbon efficiency from 28% to 123% for gasification processes, from 28% to 45% for second-generation ethanol, and from 50% to 65% for direct liquefaction processes. Biofuels are produced to a cost range 60–140 EUR/MWh-biofuel, depending on the chosen technology pathway, feedstock and electricity prices. Notably, production in electrified biorefineries proves cost-competitive when compared to pure electrofuel (E-fuels) tracks. Depending on the selected technology pathway and the extent of electrification, a reduction in GHG emissions ranging from 75% to 98% is achievable, particularly when powered by a low-carbon electricity mix.

Keywords