Animals (Mar 2023)

Evaluation of Rumen Degradation Kinetics of Low-Lignin Alfalfa ‘Hi-Gest<sup>®</sup> 360’ in Saskatchewan Canada

  • Daalkhaijav Damiran,
  • Bill Biligetu,
  • Herbert Lardner

DOI
https://doi.org/10.3390/ani13061047
Journal volume & issue
Vol. 13, no. 6
p. 1047

Abstract

Read online

The objective of this study was to determine rumen degradation kinetics of new low-lignin alfalfa (Medicago sativa L.) cv. Hi-Gest®360 (HiGest) in comparison with conventional alfalfa cv. AC Grazeland (Grazeland) in monoculture and binary mixtures at different maturity stages. Two cultivars of alfalfa (HiGest, and AC Grazeland) and their binary mixtures with hybrid bromegrass (HBG; cv. AC Success), grown in 2019 at two locations (Saskatoon and Lanigan), were cut at three maturity stages of alfalfa (1 = 10% bloom; 2 = 40% bloom; and 3 = 100% bloom). Rumen degradation characteristics, including rapidly degradable fraction (S), potentially degradable fraction (D), undegradable fraction (U), degradation rate (Kd), lag time (T0), and effective degradability (ED) of each component were determined using in situ technique and were analyzed by a first-order kinetic equation described by Ørskov and McDonald with lag time. Generally, in alfalfa monoculture, S or D were decreased and U was increased without affecting Kd and T0, resulting in decreased ED fraction with increasing stage of maturity. In binary mixtures, plant maturity stages have negligible effects on rumen degradation characteristics of CP. HiGest had higher effective degradability of DM (EDDM) as well as of NDF (EDNDF) than Grazeland. In conclusion, HiGest had greater DM and NDF rumen degradation potential relative to Grazeland. HiGest and Grazeland were different in DM and CP degradation patterns, with HiGest having higher EDDM and EDCP than Grazeland.

Keywords