Frontiers in Physiology (Mar 2015)

Light induces changes in activities of Na+/K+(NH4+)-ATPase, H+/K+(NH4+)-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam Tridacna squamosa

  • Alex Y K Ip,
  • Alex Y K Ip,
  • Biyun eChing,
  • Biyun eChing,
  • Kum C. Hiong,
  • Kum C. Hiong,
  • Yen Ling eChoo,
  • Mel Veen Boo,
  • WaiP eWong,
  • S F Chew

DOI
https://doi.org/10.3389/fphys.2015.00068
Journal volume & issue
Vol. 6

Abstract

Read online

The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH4+ or H+, and activities of enzymes involved in converting NH4+ to glutamate/glutamine in inner mantle, outer mantle and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH4+ in substitution for K+ to activate Na+/K+-ATPase (NKA), manifested as a significant increase in the Na+/NH4+-activated-NKA activity in the inner mantle. However, similar phenomena were not observed in the extensible outer mantle, which contained abundant symbiotic zooxanthellae. Hence, during light-enhanced calcification, H+ released from CaCO3 deposition could react with NH3 to form NH4+ in the extrapallial fluid, and NH4+ could probably be transported into the shell-facing inner mantle epithelium through NKA. Light also induced an increase in the activity of glutamine synthetase, which converts NH4+ and glutamate to glutamine, in the inner mantle. Taken together, these results explained observations reported elsewhere that light induced a significant increase in pH and a significant decrease in ammonia concentration in the extrapallial fluid, as well as a significant increase in the glutamine concentration in the inner mantle, of T. squamosa. Exposure of T. squamosa to light also led to a significant decrease in the N-ethylmaleimide (NEM)-sensitive-V-H+-ATPase (VATPase) in the inner mantle, and significant increases in the Na+/K+-activated-NKA, H+/NH4+-activated-H+/K+-ATPase and NEM-sensitive-VATPase activities in ctenidia, indicating that light-enhanced calcification might perturb Na+ homeostasis and acid/base balance in the hemolymph, and might involve the active uptake of NH4+ from the environment. This is the first report on light having direct enhancing effects on activities of certain transporters/enz

Keywords