npj Quantum Information (Aug 2021)

Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors

  • Jared B. Hertzberg,
  • Eric J. Zhang,
  • Sami Rosenblatt,
  • Easwar Magesan,
  • John A. Smolin,
  • Jeng-Bang Yau,
  • Vivekananda P. Adiga,
  • Martin Sandberg,
  • Markus Brink,
  • Jerry M. Chow,
  • Jason S. Orcutt

DOI
https://doi.org/10.1038/s41534-021-00464-5
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 8

Abstract

Read online

Abstract As superconducting quantum circuits scale to larger sizes, the problem of frequency crowding proves a formidable task. Here we present a solution for this problem in fixed-frequency qubit architectures. By systematically adjusting qubit frequencies post-fabrication, we show a nearly tenfold improvement in the precision of setting qubit frequencies. To assess scalability, we identify the types of “frequency collisions” that will impair a transmon qubit and cross-resonance gate architecture. Using statistical modeling, we compute the probability of evading all such conditions, as a function of qubit frequency precision. We find that, without post-fabrication tuning, the probability of finding a workable lattice quickly approaches 0. However, with the demonstrated precisions it is possible to find collision-free lattices with favorable yield. These techniques and models are currently employed in available quantum systems and will be indispensable as systems continue to scale to larger sizes.