AIP Advances (Nov 2018)

Structural and thermoelectric properties of Se doped In2Te3 thin films

  • Pandian Mannu,
  • Matheswaran Palanisamy,
  • Gokul Bangaru,
  • Sathyamoorthy Ramakrishnan,
  • Meena Ramcharan,
  • Asokan Kandasami

DOI
https://doi.org/10.1063/1.5057734
Journal volume & issue
Vol. 8, no. 11
pp. 115015 – 115015-11

Abstract

Read online

The Se-Te based chalcogenides exhibit novel property of Phase Change Memory (PCM) which has potential applications in electrical non-volatile memories. These materials are also suitable in thermal to electrical energy conversions and, hence, of potential interest in energy sustainability as thermoelectric devices. In this study, the Se doped In2Te3 thin films were prepared by thermal evaporation and were annealed at 250 °C and 300 °C in Argon gas. The X-ray diffraction spectra show that thermal annealing leads to the phase transitions in Se doped In2Te3 into binary phases of In2Se3 and In2Te3. The surface morphology of the films exhibits the grains of spherical nature. Annealing also decreases the energy band gap due to the presence of two phases. From the four probe and photoconductivity measurements, a large contrast in electrical resistance between the amorphous and crystalline states is found with a variation of a few orders of magnitude. The electrical transport properties such as the electrical resistivity, Seebeck coefficient and the power factor were measured in the temperature range from 300 K to 430 K. All the deposited and annealed thin films exhibit n-type conductivity with the Seebeck coefficient ranging from -338 μVK-1 to -510 μVK-1. An increase in thermoelectric power of 25% is observed in the 300 °C annealed films in comparison to the as-deposited films. Moreover, the lower Se doped In2(Te0.96Se0.04)3 compound exhibits a better thermoelectric performance compared to the In2(Te0.90Se0.1)3 composition. This study shows the multifunctional nature of Se doped In2Te3 both for PCM and thermoelectric applications.