Frontiers in Robotics and AI (Oct 2022)

Confidentiality in medical images through a genetic-based steganography algorithm in artificial intelligence

  • Eduardo Vazquez,
  • Stephanie Torres,
  • Giovanny Sanchez,
  • Juan-Gerardo Avalos,
  • Marco Abarca,
  • Thania Frias,
  • Emmanuel Juarez,
  • Carlos Trejo,
  • Derlis Hernandez

DOI
https://doi.org/10.3389/frobt.2022.1031299
Journal volume & issue
Vol. 9

Abstract

Read online

Nowadays, image steganography has an important role in hiding information in advanced applications, such as medical image communication, confidential communication and secret data storing, protection of data alteration, access control system for digital content distribution and media database systems. In these applications, one of the most important aspects is to hide information in a cover image whithout suffering any alteration. Currently, all existing approaches used to hide a secret message in a cover image produce some level of distortion in this image. Although these levels of distortion present acceptable PSNR values, this causes minimal visual degradation that can be detected by steganalysis techniques. In this work, we propose a steganographic method based on a genetic algorithm to improve the PSNR level reduction. To achieve this aim, the proposed algorithm requires a private key composed of two values. The first value serves as a seed to generate the random values required on the genetic algorithm, and the second value represents the sequence of bit locations of the secret medical image within the cover image. At least the seed must be shared by a secure communication channel. The results demonstrate that the proposed method exhibits higher capacity in terms of PNSR level compared with existing works.

Keywords