Journal of Electronic Science and Technology (Jun 2023)
Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph
Abstract
At present, knowledge embedding methods are widely used in the field of knowledge graph (KG) reasoning, and have been successfully applied to those with large entities and relationships. However, in research and production environments, there are a large number of KGs with a small number of entities and relations, which are called sparse KGs. Limited by the performance of knowledge extraction methods or some other reasons (some common-sense information does not appear in the natural corpus), the relation between entities is often incomplete. To solve this problem, a method of the graph neural network and information enhancement is proposed. The improved method increases the mean reciprocal rank (MRR) and Hit@3 by 1.6% and 1.7%, respectively, when the sparsity of the FB15K-237 dataset is 10%. When the sparsity is 50%, the evaluation indexes MRR and Hit@10 are increased by 0.8% and 1.8%, respectively.