Physics Letters B (Aug 2023)
Dirac/Weyl-node-induced oscillating Casimir effect
Abstract
The Casimir effect is a quantum phenomenon induced by the zero-point energy of relativistic fields confined in a finite-size system. This effect for photon fields has been studied for a long time, while the realization of counterparts for fermion fields in Dirac/Weyl semimetals is an open question. We theoretically demonstrate the typical properties of the Casimir effect for relativistic electron fields in Dirac/Weyl semimetals and show the results from an effective Hamiltonian for realistic materials such as Cd3As2 and Na3Bi. We find an oscillation of the Casimir energy as a function of the thickness of the thin film, which stems from the existence of Dirac/Weyl nodes in momentum space. Experimentally, such an effect can be observed in thin films of semimetals, where the thickness dependence of thermodynamic quantities is affected by the Casimir energy.