Insights into Imaging (Oct 2023)

Validity of a multiphase CT-based radiomics model in predicting the Leibovich risk groups for localized clear cell renal cell carcinoma: an exploratory study

  • Huayun Liu,
  • Zongjie Wei,
  • Yingjie Xv,
  • Hao Tan,
  • Fangtong Liao,
  • Fajin Lv,
  • Qing Jiang,
  • Tao Chen,
  • Mingzhao Xiao

DOI
https://doi.org/10.1186/s13244-023-01526-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Objective To develop and validate a multiphase CT-based radiomics model for preoperative risk stratification of patients with localized clear cell renal cell carcinoma (ccRCC). Methods A total of 425 patients with localized ccRCC were enrolled and divided into training, validation, and external testing cohorts. Radiomics features were extracted from three-phase CT images (unenhanced, arterial, and venous), and radiomics signatures were constructed by the least absolute shrinkage and selection operator (LASSO) regression algorithm. The radiomics score (Rad-score) for each patient was calculated. The radiomics model was established and visualized as a nomogram by incorporating significant clinical factors and Rad-score. The predictive performance of the radiomics model was evaluated by the receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA). Results The AUC of the triphasic radiomics signature reached 0.862 (95% CI: 0.809–0.914), 0.853 (95% CI: 0.785–0.921), and 0.837 (95% CI: 0.714–0.959) in three cohorts, respectively, which were higher than arterial, venous, and unenhanced radiomics signatures. Multivariate logistic regression analysis showed that Rad-score (OR: 4.066, 95% CI: 3.495–8.790) and renal vein invasion (OR: 12.914, 95% CI: 1.118–149.112) were independent predictors and used to develop the radiomics model. The radiomics model showed good calibration and discrimination and yielded an AUC of 0.872 (95% CI: 0.821–0.923), 0.865 (95% CI: 0.800–0.930), and 0.848 (95% CI: 0.728–0.967) in three cohorts, respectively. DCA showed the clinical usefulness of the radiomics model in predicting the Leibovich risk groups. Conclusions The radiomics model can be used as a non-invasive and useful tool to predict the Leibovich risk groups for localized ccRCC patients. Critical relevance statement The triphasic CT-based radiomics model achieved favorable performance in preoperatively predicting the Leibovich risk groups in patients with localized ccRCC. Therefore, it can be used as a non-invasive and effective tool for preoperative risk stratification of patients with localized ccRCC. Key points • The triphasic CT-based radiomics signature achieves better performance than the single-phase radiomics signature. • Radiomics holds prospects in preoperatively predicting the Leibovich risk groups for ccRCC. • This study provides a non-invasive method to stratify patients with localized ccRCC. Graphical Abstract

Keywords