Energies (Jul 2024)

Enhancing Electrode Efficiency in Proton Exchange Membrane Fuel Cells with PGM-Free Catalysts: A Mini Review

  • Ioanna Martinaiou,
  • Maria K. Daletou

DOI
https://doi.org/10.3390/en17143443
Journal volume & issue
Vol. 17, no. 14
p. 3443

Abstract

Read online

Proton Exchange Membrane Fuel Cells (PEMFCs) represent a promising green solution for energy production, traditionally relying on platinum-group-metal (PGM) electrocatalysts. However, the increasing cost and limited global availability of PGMs have motivated extensive research into alternative catalyst materials. PGM-free oxygen reduction reaction (ORR) catalysts typically consist of first-row transition metal ions (Fe, Co) embedded in a nitrogen-doped carbon framework. Key factors affecting their efficacy include intrinsic activity and catalyst degradation. Thus, alternative materials with improved characteristics and the elucidation of reaction and degradation mechanisms have been the main concerns and most frequently explored research paths. High intrinsic activity and active site density can ensure efficient reaction rates, while durability towards corrosion, carbon oxidation, demetallation, and deactivation affects cell longevity. However, when moving to the actual application in PEMFCs, electrode engineering, which involves designing the catalyst layer, and other critical operational factors affecting fuel cell performance play a critical role. Electrode fabrication parameters such as ink formulation and deposition techniques are thoroughly discussed herein, explicating their impact on the electrode microstructure and formed electrochemical interface and subsequent performance. Adjusting catalyst loading, ionomer content, and porosity are part of the optimization. More specifically, porosity and hydrophobicity determine reactant transport and water removal. High catalyst loadings can enhance performance but result in thicker layers that hinder mass transport and water management. Moreover, the interaction between ionomer and catalyst affects proton conductivity and catalyst utilization. Strategies to improve the three-phase boundary through the proper ionomer amount and distribution influence catalyst utilization and water management. It is critical to find the right balance, which is influenced by the catalyst–ionomer ratio and affinity, the catalyst properties, and the layer fabrication. Overall, understanding how composition and fabrication parameters impact electrode properties and behaviour such as proton conductivity, mass transport, water management, and electrode–electrolyte interfaces is essential to maximize electrochemical performance. This review highlights the necessity for integrated approaches to unlock the full potential of PGM-free materials in PEMFC technology. Clear prospects for integrating PGM-free catalysts will drive cleaner and more cost-effective, sustainable, and commercially viable energy solutions.

Keywords