Biomolecules (Nov 2022)

SARS-CoV-2 Delta Variant: Interplay between Individual Mutations and Their Allosteric Synergy

  • Kevin C. Chan,
  • Yi Song,
  • Zheng Xu,
  • Chun Shang,
  • Ruhong Zhou

DOI
https://doi.org/10.3390/biom12121742
Journal volume & issue
Vol. 12, no. 12
p. 1742

Abstract

Read online

Since its first appearance in April 2021, B.1.617.2, also termed variant Delta, catalyzed one major worldwide wave dominating the second year of coronavirus disease 2019 (COVID-19) pandemic. Despite its quick disappearance worldwide, the strong virulence caused by a few point mutations remains an unsolved problem largely. Along with the other two sublineages, the Delta variant harbors an accumulation of Spike protein mutations, including the previously identified L452R, E484Q, and the newly emerged T478K on its receptor binding domain (RBD). We used molecular dynamics (MD) simulations, in combination with free energy perturbation (FEP) calculations, to examine the effects of two combinative mutation sets, L452R + E484Q and L452R + T478K. Our dynamic trajectories reveal an enhancement in binding affinity between mutated RBD and the common receptor protein angiotensin converting enzyme 2 (ACE2) through a net increase in the buried molecular surface area of the binary complex. This enhanced binding, mediated through Gln493, sets the same stage for all three sublineages due to the presence of L452R mutation. The other mutation component, E484Q or T478K, was found to impact the RBD-ACE2 binding and help the variant to evade several monoclonal antibodies (mAbs) in a distinct manner. Especially for L452R + T478K, synergies between mutations are mediated through a complex residual and water interaction network and further enhance its binding to ACE2. Taking together, this study demonstrates that new variants of SARS-CoV-2 accomplish both “attack” (infection) and “defense” (antibody neutralization escape) with the same “polished sword” (mutated Spike RBD).

Keywords